Chronic JZL184 treatment normalizes impaired striatal synaptic plasticity and motor learning in YAC128 Huntington disease mice

Cameron L. Woodard*, Marja D. Sepers*, Matthew N. Hill and Lynn A. Raymond

1Department of Psychiatry and Djavad Mowafaghian Centre for Brain Health, University of British Columbia, Vancouver, BC, Canada 2Hotchkiss Brain Institute, University of Calgary, Calgary, AB, Canada *Co-lead author

Introduction

- In the genetic neurodegenerative disorder Huntington disease (HD), striatal degeneration is preceded by synaptic and circuit-level dysfunction
- Alterations in the expression and signaling of the CB1 cannabinoid receptor, a key component of the endocannabinoid (eCB) system, are observed in HD patients and mouse models
- Work from our lab has found that eCB-mediated long-term depression (LTD) is impaired in brain slices collected from YAC128 HD mice
- LTD can be rescued in YAC128 brain slices by JZL184 treatment

Methodology

- To assess the translational potential of targeting the eCB system in vivo, we chronically treated 5-month-old YAC128 HD mice with JZL184 for 20-25 days
- JZL184 was dissolved in peanut butter and administered orally to mice every day at a dose of 4 mg/kg
- Behavioural testing, including the accelerating rotarod and forced swim test, was performed from day 14 to day 20
- Following this treatment period, brain slices were collected for acute slice electrophysiology experiments
- Striatal tissue was also collected for mass spectrometry analysis of the endocannabinoids 2-AG and anandamide (AEA)

Chronic JZL184 treatment elevates 2-AG levels without affecting AEA

- Chronic JZL184 treatment resulted in a five-fold increase in the concentrations of 2-AG in the striatum (tissue collected within 4 hours of last dose)
- AEA levels were unaffected by JZL184 treatment

Motor impairments in YAC128 mice are no longer observed following JZL184 treatment

- Motor coordination was assessed using the accelerating rotarod test, with each mouse performing three trials per day over four days
- Control YAC128 mice had significantly impaired learning of the rotarod task as compared to WT mice
- Following JZL184 treatment, rotarod learning was not significantly different between WT and YAC128 mice
- Immobility time on the forced swim test, indicative of ‘depressive’-like behaviour, was significantly greater in YAC128 as compared to WT mice, and was increased in both genotypes following JZL184 treatment

Conclusions

- Chronic oral JZL184 treatment was effective at reversing neuroplasticity deficits in the YAC128 mouse model of Huntington disease, and modestly improved motor deficits in these animals
- These results provide evidence that targeting impairments in endocannabinoid signaling may be an effective strategy for recovering neuroplasticity and treating the early motor symptoms of HD